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Abstract

A numerical study of the destabilizing effects of localized impulsive perturbations in pressure-

driven Hagen-Poiseuille or pipe flow is presented. The numerics intend to ellucidate the intrinsic

mechanisms of subcritical transition to turbulence in pipe flow by reproducing very recent experi-

mental explorations carried out by Hof, Juel and Mullin [1], concluding that the minimum ampli-

tude of a perturbation required to cause transition scales as the inverse of the Reynolds number,

i.e., O(Re−1). The numerical model simulates the experimental disturbance generator based on

impulsive injection of fluid through six slits azimuthally equispaced on a perimeter around the pipe.

This is accomplished by introducing a local time-dependent impulsive volume force term in the

Navier-Stokes equations for the perturbation velocity field, fulfilling incompressibility constraints.

A comprehensive exploration of the critical amplitudes that trigger transition as a function of the

injection duration is carried out. It is concluded, in agreement with experiments, that injections

lasting longer than ∆tinj ≃ 24 advective time units do not remarkably decrease the critical am-

plitude of transition. Threshold amplitudes for long enough injections are then computed within

the range Re ∈ [2000, 14125]. For Re & 4000 the numerical results agree with the experiments.

However, for Re . 2800, neat transitions are very difficult to obtain, being impossible to provide an

accurate value of the critical amplitude. The apparent disagreement with the sound regular slope

of the experimental threshold is explained in terms of the differences between constant mass-flux

versus pressure-driven pipe flows.
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I. INTRODUCTION

Transition to turbulence in Hagen-Poiseuille flow (fluid flow through a pipe) has been

object of analysis for over a century. Since Osborne Reynolds published the first study2

regarding instability phenomena in pipe flows, many theoretical3–6, numerical7–13 and

experimental1,14–16 fluid dynamicists have devoted enormous efforts to clarify the inner mech-

anisms that are responsible for the eventual transition to turbulence of this classical problem

of fluid dynamics.

Although there is no formal proof, comprehensive numerical linear stability

analyses7,10,17–19 suggest that Hagen-Poiseuille or pipe flow (hpf) is always stable with re-

spect to infinitesimal perturbations for any value of the Reynolds number (Re). In practice,

the flow exhibits natural transition to turbulence in the laboratory for Reynolds numbers

above Re ≃ 2000, i.e., a subcritical transition17. Experimental evidence shows that pipe flow

becomes more sensitive to perturbations when increasing Re, but experiments carried out

under extremely careful conditions may remain laminar for very high speeds of the fluid.

Since the basic flow is linearly stable, finite (but small) amplitude perturbations must be

responsible for the transition to turbulence.

During the last decade, the pursuit of an explanation of the instability phenomenon in

pipe flow has followed two independent research approaches. The first one has been mainly

focused on the study of the effects of nonmodal transient growth exhibited by streamwise

vortical finite amplitude perturbations, due to the strong nonnormality of the linearized

Navier-Stokes operator, i.e., non-orthogonality of its eigenvectors7,11,20,21. The second has

focused on the exploration of the phase map of the corresponding dynamical system repre-

senting the fluid problem. Numerical studies have recently revealed the existence of travelling

waves of selected azimuthal symmetry, presumably constituting the essential topological fea-

tures of the chaotic dynamics5,9 observed. The limit cycles associated with these travelling

waves have been proved to be linearly unstable and their associated friction factor reason-

ably agrees with the empirical laws describing turbulent flows in smooth pipes5, as a clear

sign of the relevance of these solutions in the turbulent regime. Postprocessed experimen-

tal results have recently suggested the presence of the aforementioned travelling waves as

inherent components of the turbulent flow22.

One of the main goals of the two previously described approaches to subcritical turbulence
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in hpf has been to provide a characterization of the basin of attraction of this basic laminar

solution, i.e., a subset in an infinite dimensional space that contains the basic flow, driving

towards it any initial perturbation contained in this subset. Numerical simulations confirm

that hpf is even stable for all axisymmetric finite-amplitude disturbances23. Therefore, the

basin of attraction is not a bounded set and its size is a meaningless measure because it

is actually infinite. Instead, we must think of the critical threshold as the boundary of

that basin of attraction that approaches a minimum norm A from the steady solution. A

question still unsolved is the dependence of this norm or amplitude with respect to the

Reynolds number, A = A(Re), that must necessarily decrease when Re is increased, being

plausible to assume that its asymptotic behaviour scales with Re according to

A ∼ Reγ , (1)

with γ necessarily negative. In other words, A represents the minimum amplitude of a

perturbation capable of destabilizing the basic profile, thus leading to a turbulent regime.

Expression (1) implicitly involves many physical aspects that require an accurate de-

scription. First, a mathematical definition of the amplitude A appearing in (1) must be

provided. Second, the geometrical features of the perturbation (azimuthal symmetry or

streamwise dependence, for example) will necessarily conditionate the subspace over which

we are measuring the amplitude appearing in (1). Third, depending on the perturbative

methodology used, the dynamical system scenario of the problem may fall into two dif-

ferent categories. Either the perturbation may develop from an initial disturbance of the

basic flow, the fluid system evolving in an autonomous fashion, or it may develop from a

time-dependent source such as an external forcing or time-dependent boundary conditions.

Fourth, when studying the time evolution of a perturbation in an open flow, advection is

crucial, since potential turbulent transients flush down the drain, making it impossible to

classify the dynamics for long times. Once an observational time-horizon, say T , is chosen,

one must establish criteria to distinguish between laminar, relaminarized or turbulent states.

As a result, the critical exponent appearing in (1) will implicitly depend on the time horizon

chosen24, i.e., γ = γ(T ). Fifth, expression (1) is only meaningful for high values of Re.

Theoretical exponents for plane channel flows have been obtained by means of asymptotic

methods within the framework of some particular transition scenarios25. For pipe flow,

recent renormalizations26 have been suggested in order to cast different experimental results
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in terms of a single definition of the amplitude appearing in (1), providing lower and upper

bounds for the value of this critical exponent that presumably lies within the interval γ ∈

[−9/5,−6/5].

Very recent experiments carried out by Hof, Juel & Mullin1, henceforth referred as hjm,

explored transition phenomena of pipe flow subjected to finite amplitude impulsive per-

turbations for a wide range of axial speeds of the flow. The experiments reported in hjm

were carried out in a long aspect ratio pipe, with a piston that kept the mass-flux constant

during every run and where the disturbances were generated by impulsively injecting fluid

into the main flow through six slits azimuthally equispaced on a perimeter around the pipe

located at a fixed axial position far downstream from the pipe inlet, so that the hpf flow

was sufficiently developed. The experimental results of hjm clearly concluded that the min-

imum amplitude of a perturbation required to trigger transition scaled as the inverse of the

Reynolds number, i.e., A = O(Re−1). The experimental procedure of perturbing the basic

flow would correspond to the category of time-dependent (non-autonomous) perturbative

methods.

By contrast, numerical simulations11,13 based on initial streamwise perturbations con-

cluded that the minimum amplitude, defined as the square root of the kinetic energy,

required to destabilize the flow, scaled as A = O(Reγ), with γ between −1 and −3/2,

depending on the type of initial vortical perturbation chosen. The discrepancy with the

experimental results might probably relate to the definition of the perturbation amplitude

used in Refs. 11,13, which is not applicable to the type of perturbations used in hjm. Nev-

ertheless, transition in pipe flow strongly depends not only on the amplitude of the initial

perturbation, but also on its symmetry features, being globally stable, for instance, with

respect to axisymmetric perturbations23. The perturbation mechanism used in Refs. 11,13

corresponds to the category of autonomous perturbative methods, since there is no time-

dependent forcing of the Navier-Stokes problem.

The main goal of this work is to gain some insight on the internal mechanisms responsible

for transition by reproducing numerically the experiments of hjm with an accurate spec-

tral method. The main difference between the present study and hjm experimental work

concerns the principle driving the fluid along the pipe. The pressure drop (or streamwise

forcing) is held constant throughout each of our computations, letting the massflow vary

freely as perturbations develop within the flow. Conversely, the experiments force a pre-
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scribed massflow by means of a time-dependent forcing that, inflicted upon the fluid by a

constant-speed sucking piston, injects or substracts energy into or from the flow.

The paper is structured as follows. The mathematical and numerical formulation of

the problem are presented in §II, where special attention is given to the modeling of the

injection and to relating the numerical injection amplitude to its experimental counterpart.

§III deals with the injection-time dependency of the amplitude threshold, comparing it with

experimental data. A typical transitional experiment is analyzed in §IV to demonstrate the

effects of localized impulsive injections. In §V, an extensive exploration is undertaken to

determine the critical amplitude threshold as a function of the Reynolds number. Finally,

the main conclusions drawn from this work are summarized in §VI.

II. MATHEMATICAL FORMULATION AND PERTURBATION MODELING

We consider the motion of an incompressible viscous fluid of kinematic viscosity ν and

density ρ. The fluid is driven through a circular pipe of radius a and infinite length by a

uniform pressure gradient, Π0, parallel to the axis of the pipe. The problem is naturally

formulated in cylindrical coordinates, the velocity of the fluid being given by its radial (r̂),

azimuthal (θ̂) and axial (ẑ) components,

v = u r̂ + v θ̂ + w ẑ = (u , v , w), (2)

where u, v and w depend on the three spatial coordinates (r, θ, z) and time t. The motion

of the fluid is governed by the incompressible Navier-Stokes equations

∂tv + (v · ∇)v = −∇p −
Π0

ρ
ẑ + ν∆v (3)

∇ · v = 0, (4)

where v is the velocity vector field, satisfying the no-slip boundary condition at the wall,

vpipe wall = 0, (5)

and p is the reduced pressure. A basic steady solution of (3-5) is the so-called Hagen-

Poiseuille flow,

vB = (uB , vB , wB) =

(

0 , 0 , −
Π0a

2

4ρν

[

1 −
(r

a

)2
])

, pB = c, (6)
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where c is an arbitrary constant. This basic flow is a parabolic axial velocity profile which

only depends on the radial coordinate. The velocity of the fluid attains a maximum value

Ucl = −Π0a
2/4ρν at the center-line or axis of the cylinder.

Henceforth, all variables will be rendered dimensionless using a and Ucl as space and

velocity units, respectively. The axial coordinate z is unbounded since the length of the

pipe is infinite. In what follows, it will be assumed that the flow is axially periodic with

period b. In the dimensionless system, the spatial domain D of the problem is

D = [0, 1] × [0, 2π) × [0, Λ) (7)

where Λ = b/a is the dimensionless length of the pipe, in radii units. In the new variables,

the basic flow takes the form

vB = (uB, vB, wB) = (0 , 0 , 1 − r2). (8)

The parameter governing the dynamics of the problem is the nominal Reynolds number Re,

based on the basic laminar flow corresponding to a given axial pressure gradient,

Re =
aUcl

ν
=

−Π0a
3

4ρν2
., (9)

whereas the actual Reynolds number used in the experiments by hjm is defined as

Rea =
d U

ν
, (10)

where d = 2a is the pipe diameter and

U =
1

πa2

∫ 2π

0

∫ a

0

w r dr dθ (11)

is the mean axial instantaneous speed of the flow. Accordingly, the actual Reynolds number

Rea will be an evolving quantity in the Navier-Stokes equations representing a pressure-

driven pipe. Both Reynolds numbers coincide for the laminar Hagen-Poiseuille profile,

regardless of the pressure-driven or constant mass-flux nature of the problem. In a con-

stant mass-flux pipe, Rea is forced to remain always constant through the action of a time-

dependent adapting volume force, whereas in a pressure-driven pipe, it exhibits a consider-

able drop as turbulence sets in.

The flow velocity can be expressed as a sum of the basic flow plus a solenoidal velocity

disturbance field vanishing at the pipe wall

v(r, θ, z, t) = vB(r) + u(r, θ, z, t), ∇ · u = 0, u(1, θ, z, t) = 0. (12)
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The same sort of decomposition is considered for the pressure field

p(r, θ, z, t) = pB + q(r, θ, z, t). (13)

Formal substitution of (12-13) in the Navier-Stokes equations leads to a nonlinear initial-

boundary problem for u and q,

∂tu = −∇q +
1

Re
∆u − (vB · ∇)u − (u · ∇)vB − (u · ∇)u, (14)

∇ · u = 0, (15)

u(1, θ, z, t) = 0, (16)

u(r, θ + 2πn, z, t) = u(r, θ, z, t), (17)

u(r, θ, z + lΛ, t) = u(r, θ, z, t), (18)

u(r, θ, z, 0) = u0, ∇ · u0 = 0, (19)

for (n, l) ∈ Z
2, (r, θ, z) ∈ D and t > 0. Equation (14) describes the nonlinear space-time

evolution of the disturbance velocity field. Equation (15) is the solenoidal condition for

u, and equations (16)–(18) describe the homogeneous boundary condition for the radial

coordinate and the periodic boundary conditions for the azimuthal and axial coordinates,

respectively. Finally, equation (19) is the initial solenoidal condition at t = 0.

The system (14-19) is spatially discretized by means of a solenoidal spectral Petrov-

Galerkin scheme in primitive variables, for which the pressure term −∇q cancels out in the

projection. The resulting dynamical system of amplitudes is numerically integrated in time

by means of a 4th order linearly implicit Backward-Differences method with standard 4th

order extrapolation of the non-linear term. In our explorations, the pipe length has been

fixed to Λ = 12.8π ∼ 40 radii units and the spatial resolution used in the domain D has

been set to Mr ×Nθ ×Lz = 33× 65× 65 (radial×azimuthal×axial) grid points, resulting in

a dynamical system of nearly 1.4 × 105 degrees of freedom. No substantial differences have

been observed when increasing the resolution. The numerical reliability of the method has

been extensively tested for low and high resolution computations11,27–29.

A. Numerical model of the six-jet impulsive injection

Equations (14-19) describe the spatio-temporal evolution of an arbitrary perturbation,

the source of disturbances being prescribed by the initial condition u0 in (19). As mentioned
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in the Introduction, different scenarios of transition have been studied11,29 based on specific

initial perturbations. In the present work, no initial perturbation is to be prescribed, i.e.,

u0 = 0, and the disturbances will be generated by the action of an external forcing.

Figure 1a is a schematic plot of the injection device used in hjm, where the six slits are

equally distributed along the perimeter of the pipe so that the injected fluid jet penetrates

into the basic flow with an angle ϕ = π/3 with respect to the radial coordinate, in a plane

normal to the pipe axis. In addition, the injection is located at a particular streamwise coor-

dinate for which the basic Hagen-Poiseuille flow profile can be considered as fully developed.

Besides, the injection is activated following a step-like time-dependent function, active for a

prescribed injection duration. We refer the reader to hjm
1,15 for further details.

Numerical spectral modeling of the device shown in Fig. 1a is not a trivial task. To start

with, fluid is injected from the wall, thus violating the homogenous boundary condition

(16). Second, we do not know a priori the nature of the injected flow regarding its spatial

structure, i.e., laminar or turbulent profile and penetration capability. Third, the boundary

condition at the wall is time-dependent, in contrast with (16). Moreover, since the fluid is

injected impulsively, which requires a time lapse to do so, the initial condition (19) cannot

represent by any means such mechanism.

The aforementioned difficulties can be mostly overcome by means of adding an impulsive

volume force term f in equation (14), playing the role of the injection. This forcing acts

locally in time and space as an accelerator of the fluid and can be chosen and suitably

modified until the dynamics observed are in agreement with the experimental observations.

In this work, we are going to study the perturbative effects generated by introducing in (14)

an impulsive volume forcing term, f , localized in time and space, i.e.,

∂tu = −∇q + f +
1

Re
∆u − (vB · ∇)u − (u · ∇)vB − (u · ∇)u. (20)

The length scale of the experimental injection holes is far too small to be captured in a

feasible discretization. As a result, the approach of modeling the effects of an injection,

rather than the injection itself, seems a reasonable option. Thus, it is assumed that the

only, or of outmost importance, effect of the injection is that of accelerating the fluid around

the jet. The forcing field f appearing in (20) is introduced so that the resulting local

acceleration is qualitatively equivalent to the one generated by the injection experimental

device. We can properly represent the number of injection points (six) and the angle at
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which the jets penetrate the pipe (π/3). The width of the jets in the cross-sectional plane

can be more or less approximated, but not so much so in the streamwise direction where a

smoother profile must be used due to the coarse axial discretization of the domain. Finally,

the penetration of the jet becomes the least guided decision to be taken, as no data on this

is readily available.

In the present study, the forcing field has the following structure:

f(r, θ, z, t) = fa ft(t) fs(r, θ, z), (21)

where fa is the amplitude factor. The injection time-dependence is introduced through a

double-step function ft(t), given by

ft(t) =







1 t ≤ ∆tinj

0 t > ∆tinj,
(22)

acting as a switch that remains activated within the time interval t ∈ [0, ∆tinj]. Finally, fs

provides the spatial structure of the six-jet injection and its explicit mathematical expression

can be found in the Appendix. Figure 1b shows the acceleration field inflicted by the

modelled forcing upon the stationary basic flow.

Values of the injection lapse within the range ∆tinj ∈ [2, 24] advective time units have

been used throughout the present study. It would make no sense to report on the amplitude

factor (fa) range explored, since it is only intended to scale/modulate the arbitrary original

norm of the spatial structure fs and therefore has a purely relative meaning.

B. Relating the numerical injection amplitude to its experimental counterpart

One of the main difficulties is the quantitative comparison of the effect produced by the

numerical injection just formulated and the actual experimental one. Some insight may be

obtained from the axisymmetric jet-theory30. Assuming the jet penetrates a resting fluid in

a direction normal to the wall from which it emanates, and that it is locally axisymmetric

around its propagation axis, which are rough idealizations, its kinematic momentum30 is

K′ = 2π

∫ ∞

0

u(̺)2 ̺ d̺, (23)

where u(̺) refers to the jet-wise component of the induced velocity field at a distance ̺ from

its axis. The value of u = u(0) on the jet axis, at a distance g from the slit is also provided
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by the theory30,

u =
3

8π

K′

νg
. (24)

The objective is to relate the velocity at a given point on the jet axis to the injected massflow,

on which quantity rests the amplitude definition used in the experiments by hjm. In practice,

the point where the forcing field f attains its maximum norm is chosen and the time evolution

of the jetwise-projected flow velocity at this point, induced by sustained action of the forcing

for all t, monitored. Under the assumption that the asymptotic laminar velocity to which

the fluid flow tends corresponds to that of an idealized jet, the axisymmetric jet theory

can be used to recover the amplitude of the injection that would potentially produce this

asymptotic velocity at the particularly chosen point.

The kinematic momentum defined in (23), which must be conserved in the jet axial

direction, can be expressed as a function of the injected massflow through one of the slits,

K′ = β
Φ2

inj

Sinj

, (25)

where Sinj is the cross-sectional area of the slit and β is a parameter depending on the jet

velocity profile considered (β = 4/3 or 1 for a laminar or a turbulent jet, respectively). It

will be assumed that the penetrating jet will commonly be turbulent. By identifying our

finite-area and finite-velocity jet with a zero-area and infinite-velocity ideal jet, both carrying

the same kinematic momentum, the center-line velocity of the jet at a distance g from the

slit, where our forcing is maximum, is

u =
3

8πνg

Φ2
inj

Sinj

. (26)

The injection amplitude A defined in hjm is given by the ratio between the total massflow

injected through the Ninj slits and the pipe massflow upon injection,

A = Ninj
Φinj

Φpipe

. (27)

The pipe massflow can be exactly derived from the actual Reynolds number, Rea, in the

experiments, or, equivalently, from the nominal Reynolds number before injection. In our

computations, the pipe massflow evolves, but, provided that the injection duration is kept

short, it can be considered that of the initially unperturbed Hagen-Poiseuille flow, so that

it can be expressed in terms of the nominal Reynolds number, Re, as

Φpipe =
πνa

2
Re. (28)
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Using equations (26) and (28), the injection amplitude defined in (27) can be expressed in

terms of the speed of the jet and the nominal Reynolds number,

A = Ninj

(

32

3
g∗S∗

inj

)1/2 (

u∗

Re

)1/2

, (29)

where g∗ = g/a, S∗
inj = Sinj/πa2 and u∗ = u/Ucl are dimensionless quantities measuring

the distance from the slit, its cross-sectional area and the jet speed, respectively. It should

be reminded that u∗ appearing in (29) is not the velocity of the flow at the chosen point

projected on the jet axis direction (which we shall call ug), but the velocity at that point

of the jet itself, the effects of which we are trying to model using a forcing field. While we

have access to the former, we infer the latter by assuming that they become the same as the

effects of the forcing saturate and the velocity at this point approaches an asymptotic value.

Different jet-penetration scenarios have been suggested26 recently in order to adjust up-

per and lower bounds for the threshold exponent γ appearing in (1). To the authors’

knowledge, equation (29) provides a first quantitative approximation to a law relating an

injection property that is mensurable in under-resolved (to be affordable) computations and

the experimental amplitude. There are other factors appearing in (29) that are associated

with geometrical features of the slit. As mentioned before, current computational power

limitations makes accurate representation of the slits not feasible. As a result, the coarse

discretization used in this study may lead to discrepancies due to geometrical differences

between the numerically modelled and the actual experimental injections. Nevertheless, we

expect to qualitatively mimic the experimental behaviour of the injection save for a scaling

factor to do with geometrical discrepancies and non-ideality of the jets.

III. EFFECTS ON TRANSITION OF INJECTION DURATION

The effect of the injection lapse on transition has been extensively tested experimentally

in hjm and it has been found that, although increasing the duration of the injection at a

given Reynolds number reduces the critical amplitude, this reduction eventually stagnates.

As a result, the critical amplitude does not depend on the injection duration, provided that

it becomes sufficiently long-lasting. Experimentally, it has been observed that the critical

amplitude is not altered for injection durations of ∆tinj & ∆t0 = 24 advective time units,

where ∆t0 will be considered later as a reference time interval for amplitude renormalization
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purposes. This behaviour should also be reproduced numerically for the simulations to be

considered reliable.

Following hjm, we proceed to validate the computational model of the injection and the

scaling law provided in (29) by simulating different injection amplitudes and injection lapses

at Re = 4000. For a given injection lapse, ∆tinj, the amplitude factor fa is increased until

transition is obtained. A computational run is considered turbulent when chaotic dynamics

have taken over the full domain and persist after 600 advective time units. Laminar runs,

instead, are characterized by the eventual viscous decay of the injected perturbation after

an initial transient growth.

Once the critical forcing amplitude is known, we proceed to compute the asymptotic

value u∗ of the jet by re-starting the same critical run but with the forcing permanently

on so that the flow jetwise speed at the chosen location on the jet axis, ug(t), has enough

time to stagnate to its asymptotic value, which we identify as u∗. This recomputation is

mandatory for example in the case of very short injections, where the forcing stops before

the monitored flow speed has achieved an asymptotic value.

Figure 2a shows the flow speed ug(t) measured at the point of maximum forcing norm

for different critical runs carried out for ∆tinj = 2, 3, 4, 5, 8 and 16 time units. On each of

these curves the forcing was stopped at the indicated instants of time (gray circles), critically

leading to transition for longer times (not shown). Figure 2a also shows the behaviour of

the flow speed for the same runs, but with permanent forcing (dashed curves). It can be

observed that there is a clear stagnation of ug to a constant value u∗ in some cases. The

curve for ∆tinj = 2 exhibits some irregularities due to the fact that very large amplitudes are

needed to lead to transition for short injections and therefore turbulence sets in before the

asymptotic value of the jet speed is reached. However it is easy to obtain a sharp asymptotic

value u∗ for most of the injections, so that this value can be used afterwards in relation (29)

to identify its corresponding amplitude A.

In order to make a consistent comparison between numerics and experiments, we define

the normalized amplitude of a ∆tinj-lapse perturbation as

A(∆tinj) =
A(∆tinj)

A(∆t0)
. (30)

Therefore, the experimental and numerical threshold amplitudes are normalized indepen-

dently with respect to their corresponding reference saturation values for ∆t0 = 24 advec-
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tive time units. With this renormalization, the critical amplitudes become independent of

the injection geometrical features appearing in (29) and comparison is rendered possible.

Table I summarizes the saturation values u∗ obtained from the computations and their cor-

responding amplitudes according to (29) and (30), Anum and Anum, respectively. Table I

also contains the experimental data, Aexp, originally extracted from Figure 3 of hjm
1 and

normalized, Aexp, according to (30). Figure 2b shows the normalized threshold amplitudes

Aexp and Anum for different injection lapses. The agreement is very good, particularly for

∆tinj > 8. Nevertheless, there is some discrepancy for short injections, ∆tinj = 2. As ex-

plained before, short injections require a larger forcing, thus triggering transition before an

asymptotic value of u∗ is identified (see Fig. 2a) to be used in the renormalization. Further-

more, the forcing field has not been tuned to accomodate the large penetration expected

from the large amplitude injections required to trigger transition for low ∆tinj.

The same sort of analysis was carried out in hjm for Re = 2170, obtaining equivalent

results regarding the stagnation of Aexp for long injection lapses. The experiment at this

lower Re could not be reproduced numerically as it was found very difficult to obtain sus-

tained transition below Re = 2800. Sustained turbulence appeared extremely sensitive to

environmental noise at the low Re-range, in agreement with what was already pointed out

by Reynolds2 in the past. This was ascertained by increasing the numerical noise at random

for different runs, which eased transition but still thwarted any possibility of repeating the

injection-lapse analysis at low Re. The incapability of the numerical model to reproduce

sustained turbulent motion at Re . 2800 can be ascribed to the pressure-driven nature of

the problem, an issue that will be addressed later on.

IV. TRANSITION DUE TO A LOCALIZED IMPULSIVE INJECTION

The transition process triggered by a localized impulsive injection will be exemplified with

a thorough analysis of a single critical run at Re = 4000. A very structured and regular

disturbance is locally enforced during an injection lapse of ∆tinj = 20 advective time units.

The perturbed portion of fluid at injection withdrawal will nevertheless be much shorter

than ∆tinj-radii, and, tipically, even shorter than Λ/4. Even though the injection lasts long,

only the near-wall region is affected by a forcing representing very oblique jets. In this

region, the streamwise advection due to the basic flow is slow and, therefore, the perturbed
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length remains short. This is clearly shown in Fig. 3a, where the azimuthal vorticity of

the disturbance velocity, (∇ × u)θ, is plotted precisely at the end of the injection lapse

t = ∆tinj = 20. Also plotted is a 3D view of a couple of axial vorticity iso-surfaces at

(∇× u)z = ±0.3, which give a clearer view of the size of the perturbed patch as well as of

its laminar or turbulent nature.

Once the injection has ceased, the perturbed patch of flow stretches and deforms as it is

advected downstream. The patch follows a cyclic evolution by which it grows and then splits

in three sections: front, central and rear. The front and rear sections of the perturbed region

travel faster and slower than the central section, respectively, as they die away. Meanwhile,

the central region starts stretching again and the whole cycle is repeated. As a result,

the length of the perturbed region can be considered to oscillate around a fairly constant

value, albeit only transiently while laminarity is preserved. Fig. 3b shows the perturbation

immediately after it first breaks into three smaller patches. In Fig. 3c, the front and rear

sections of the patch can be seen fading out as they depart from the central section position.

What brings this cyclic behavior to an end is the appearance of turbulent motion within

the perturbed region. The patch starts losing its laminarity and breaks into turbulent

bursts. At first, the turbulent bursts relaminarize at the front and back of the perturbed

structure, but soon the core of the perturbed region becomes turbulent and starts growing

monotonically. Fig. 3d, shows the perturbation once it has become fully turbulent and is

growing fast. From this point on, the trailing edge starts to abruptly decelerate while the

leading edge accelerates, rapidly polluting the whole computational domain through axial

periodicity reinfection. In experiments, the whole pipe would have transitioned downstream

from the axial location where the trailing edge finally settles.

The local growth of the trailing and leading interfaces of the turbulent patch have been

monitored during the last stages of the transition, before the turbulent structure pollutes

the whole computational domain due to the artificially imposed axial periodic boundary

conditions. The root-mean-square (r.m.s.) of the fluctuation of the axial velocity distur-

bance, 〈uz〉rms, has been computed by taking an average over the azimuthal coordinate, and

then further averaged along the radius to produce a quantity representative of the turbu-

lence level and only depending on the axial coordinate. In Fig. 4, the axial positions with

〈uz〉
2
rms ≥ 0.5%(Ucl/2)2 have been represented with black dots for t ∈ [175, 205], evidencing

the turbulent patch length evolution as a function of time. Linear regression analyses have
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been performed with the first and last point defining the leading (LE) and trailing (TE)

edges of the perturbation, respectively. The results have been plotted in Fig. 4 as dashed

lines. The slope of these lines represents the propagation velocity of the leading and trailing

edges, which happen to be cLE = 0.754Ucl and cTE = 0.325Ucl, respectively. Taking into

account that Rea ≃ 3850 during the period we measure these speeds we can express them in

terms of the mean flow velocity as cLE = 1.567Ū and cTE = 0.675Ū, which is in reasonable

agreement with experimental results for turbulent slugs14. We can therefore conclude that

the numerically observed turbulent structure closely resembles a slug. Beyond the times

plotted, the leading edge velocity sharply increases, but this is probably due to the fact

that the actual size of the perturbed region is comparable to the size of the pipe and the

leading and trailing interfaces artificially interact due to the periodic boundary conditions,

the infinite pipe no longer being properly represented.

Overall, the transition process which takes the flow from the laminar to the turbulent state

is clearly catastrophic, in agreement with what is generally observed in the experiments15.

Therefore, it is not a trivial task to identify a simple instability mechanism from the numeri-

cal computations, in contrast with former numerical studies13 based on particular streamwise

transition scenarios.

V. CRITICAL AMPLITUDE THRESHOLD FOR INJECTED PERTURBATIONS

It has been experimentally shown1 and computationally verified in §III that the critical

amplitude of an injection triggering transition does not depend on the injection duration for

∆tinj ≥ 24 advective time units. Nonetheless, it can be considered to have reasonably settled

down for ∆tinj ≥ 20. It is therefore convenient to explore the critical amplitude threshold

using this lower ∆tinj = 20, so that the perturbed length is as much shorter than the pipe

length as possible to avoid reinfection due to axial periodicity, at least within the injection

lifetime.

The critical amplitude threshold has been systematically tracked for Reynolds numbers

in the range Re ∈ [2512, 14125] and the injection duration held fixed to ∆tinj = 20 in all

the explorations. The amplitude calculation is completely analogous to the one described in

§III and the same criteria used to distinguish laminar from turbulent runs are retained. The

geometrical discrepancies between experiments and the actually modelled injection, along
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with the extreme idealization of the jets, demand a normalization of the experimental and

numerical thresholds so that they become comparable. In what follows, we normalize the

amplitudes according to

A(Re) =
A(Re)

A(Re0)
. (31)

where Re is the Reynolds number (actual and nominal confounded) of the basic flow before

being perturbed and Re0 = 14000.

The critical amplitude threshold results are shown in Fig. 5. The amplitude A, normalized

according to (31), has been plotted as a function of Re for both experiments (gray squares)

and computations (white circles), along with a dashed line indicating a slope of γ = −1.

It is remarkable how experiments and computations exhibit very similar behaviour at high

Re, which seems to evidence that the numerical model properly captures the transition

mechanisms observed in the laboratory. At the low Re-range, however, while experiments

exhibit the same characteristic asymptotic behaviour from Re values as low as 2000, the

computations fail to do so. In fact, the numerical simulations seem to find a vertical stability

threshold for Re ∼ 2500, at least for the type of perturbations used. This discrepancy can

be ascribed to several apparent differences between experiments and computations.

A first difference has to do with the topological modelization of the injection. As Re is

reduced, the critical amplitude of the forcing required to trigger transition increases. For

consistency, the computational forcing field modeling the injection has been held fixed and

merely scaled up until transition is obtained. However, in the laboratory, increasing the

injection amplitude not only scales up the induced acceleration field, but it also may modify

the topological features of the resulting jet, such as its penetration or effective width. The

forcing field chosen seems to be as effective as the experimental one for moderate and large

Re, but not so much so for low Re. However, we believe this could explain a slight deviation,

but not the spectacular discrepancy observed at very low Re.

The main difference, however, concerns the constant-massflow and pressure-driven dif-

ferent nature of the experimental and the computational pipes, respectively. As the per-

turbation grows and reorganizes the flow, the actual Reynolds Rea has a tendency to drop.

Especially in short pipes, where intermittency phenomena may fill a high portion of the

pipe length. In the constant-massflow experiments of hjm, some energy may be restituted

into the flow through the action of a constant-speed piston, so that Rea is held constant. In
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the extreme case of transition, the piston is forced to pull harder in order to restitute the

enormous amount of energy dissipated due to turbulence and keep the massflow constant.

By contrast, the numerical simulation lets Rea evolve freely. As a consequence, by the time

the perturbation has grown and transition becomes probable, Rea may be much lower than

originally, rendering the experimentally calculated critical amplitude threshold not gener-

ally applicable to our simulations, since it is not immediately apparent which value of Rea

(initial, transitional or averaged) should be used for a consistent comparison. This difficulty

in choosing when to measure Rea is in fact disclosing a more profound hindrance, namely

that the discrepancy stems from the fact that the problems being solved are indeed differ-

ent. Fortunately, this effect, which is dominant at low Re for the pipe length considered,

becomes less decisive as Re is increased, which indicates that both problems tend to become

equivalent. This is clearly evidenced in Fig. 6, where the transient drop of Rea relative to

its initial value, the nominal Re, is followed in time for injection amplitudes that are just

subcritical. It is clear that Rea suffers a transient remarkable drop for low-Re runs (over

a 20% at Re = 2818), while at high Re it remains much more stable (less than 2% drop

at Re = 14125). The significant drop makes it futile to reproduce the critical amplitude

threshold behaviour at low Re, while comparison with experiments becomes reasonable as

Re is increased.

VI. CONCLUSIONS

The effects of the impulsive perturbative system recurrently used in pipe flow experiments

have been succesfully modelled via a time-dependent volume forcing in numerical compu-

tations. The axisymmetric jet theory has been used to define a perturbation amplitude

equivalent to the one used in the aforementioned experiments.

An extensive study of the critical amplitude of the impulsive injections that are capable

of triggering transition as a function of their time-duration has been carried out at Re =

4000 and very good agreement with experimental results has been obtained. As in the

experiments, the critical amplitude has been shown to decrease with the injection duration

to end up stagnating at a constant value for ∆tinj ≥ 24 advective time units.

The evolution of injected perturbations has been monitored with detail in order to capture

the main features of a turbulent patch for Re = 4000. Numerical computations reproduce
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quite well the generation of laminar-turbulent intermittency dynamics observed in former

experimental studies. This is evidenced by monitoring the speed of the trailing and leading

interfaces of the generated turbulent slug, which are found to be roughly the same as the

ones measured in the laboratory. However, the length of the computational pipe domain and

the assumption of periodic boundary conditions makes it impossible to study the evolution

of the slug for longer times, due to the numerical interaction between the trailing and leading

interfaces.

The critical amplitude threshold has been systematically tracked for Reynolds numbers

within the range Re ∈ [2512, 14125]. The explorations have been carried out always taking

∆tinj = 20, for which the critical amplitude can be considered to have almost settled down

to its asymptotic value. Very good agreement with experiments has been obtained at the

high-end of Reynolds numbers, where the exponential scaling A ∼ Re−1 has been clearly

evidenced. By contrast, the apparent discrepancy at low Reynolds numbers is ascribed to

the different behaviour of pressure-driven and constant-massflow pipes of finite length and

also to the nature of the injection numerical model, whose topological structure has been

held fixed in all simulations. In addition, the massflow transient drop as the perturbation

develops within the flow at low Re may explain why the computational pressure-driven pipe

seems more robust to perturbations and does not exhibit transition for Re . 2800. However,

this transient drop is shown to lose transcendency as the Reynolds number is increased,

thus favoring a better asymptotic agreement between our moderate-length pressure-driven

computational pipe and the long constant-massflow experimental pipe.
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APPENDIX A: SPATIAL STRUCTURE OF THE 6-JET INJECTION MODEL

To construct the spatial structure fs of the forcing field f introduced in (20), a draft

skeleton for the acceleration field a must be generated, observing the main properties that

are desired. The consistency of this field in terms of solenoidality and boundary condi-

tions can be initially overlooked, as it will be resolved upon projection onto the Petrov-

Galerkin projection basis functions inherited from the numerical method used in the spatial

discretization11,28.

The skeleton for the spatial structure of the forcing term fs appearing in (21) is written

as a superposition of as many fields as injection points,

a(r, θ, z) =
5

∑

j=0

aj(r, θ, z) =
5

∑

j=0

a0(r, θ −
π

3
j, z). (A1)

Due to the periodic azimuthal distribution of the holes, all of them at the same axial position,

only the forcing field frame for the first slit, a0, needs to be engineered, the rest resulting

from simple rotations.

The acceleration field a0 is set up as an homogeneous field of vectors pointing in the

direction of the injection (at an angle ϕ0 with respect to the radial direction), with their

magnitude modulated with independent gaussian distributions in the three natural direc-

tions: jet-wise, jet-transverse and pipe-streamwise, represented in Fig. 7 by x̂0, ŷ0 and their

vector product x̂0∧ŷ0, respectively. Because the acceleration on the walls will have to cancel

out, the centre (i) for the gaussian distributions, where the acceleration is going to be at its

maximum, is drifted along the jet axis a certain distance g within the fluid domain, so that

the vector field to be projected does not severly violate the boundary conditions. This helps

to avoid great distortion of the prescribed vector field upon obtention of the actual forcing

to be used, since we are departing from a field which is closer to an acceptable solution.

This vector field is most easily written in the system of cross-sectional cartesian coordi-

nates (x, y) = x x̂0 + y ŷ0, with origin at (i), depicted in Fig. 7. In this coordinate system,

the vector field takes its simplest form:

a0(x, y, z) = (ax, ay) = e−Ax2−By2−C sin2( 2π

Λ
z) x̂0, (A2)

where B and C govern the jet-transverse and pipe-streamwise widths of the jet, A its jet-

wise penetration within the fluid domain and Λ is the pipe aspect ratio. Typical values used
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throughout the present work have been A = 15, B = 150, C = 75, Λ = 12.8π, ϕ0 = π/3

and g = 0.25.

The local (x, y) coordinates are related to the polar system (r, θ) according to the change






x = −(r cos θ − ri cos θi) cos(ϕi + θi) − (r sin θ − ri sin θi) sin(ϕi + θi)

y = (r cos θ − ri cos θi) sin(ϕi + θi) − (r sin θ − ri sin θi) cos(ϕi + θi),
(A3)

where (ri, θi) and ϕi are the polar coordinates of the origin of the cartesian coordinate system

and its orientation, respectively. Note that in Fig. 7, θi is negative. These quantities follow

directly from the injection parameters:


















ri =
√

1 + g2 − 2g cos ϕ0

θi = ϕ0 − ϕi

ri sin ϕi = sin ϕ0.

(A4)

The frame of the acceleration field is finally expressed in cylindrical coordinates:

a0 = (a0)r r̂ + (a0)θ θ̂ + (a0)w ẑ = −ax cos(ϕi + θi − θ) r̂ − ax sin(ϕi + θi − θ) θ̂. (A5)

The forcing field skeleton we have just constructed does neither respect the boundary

conditions nor the solenoidality condition. A compatible forcing field, fs, fit to be used in

(21), is obtained upon projection of a in (A1) onto the dual basis of the solenoidal spectral

scheme used in this work’s spatial discretization11,28.
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List of figure captions

1. (a) Six-jet injection device used in Hof, Juel & Mullin experiments1. Fluid is injected

from six azimuthally equispaced slits around a perimeter of the pipe at a fixed stream-

wise location. (b) Acceleration field ∂tu at t = 0 and z = 0, resulting from the forcing

f in (21). See the Appendix for details.

2. (a) Jet speed, ug, measured at the point of maximum forcing norm as a function of

time for different injection lapses ∆tinj = 2, 3, 4, 5, 8 and 16 (solid curve ended with

gray circles) with Re = 4000. The re-run for the same critical amplitude but with

permanent forcing are represented to show the asymptotic behaviour of ug (dashed

curves) and their saturation values u∗. (b) Normalized threshold amplitudes of Hof,

Juel and Mullin1 experiments (gray squares) and current computations (white circles)

with Re = 4000.

3. Critical run at Re = 4000, with ∆tinj = 20. Each snapshot depicts azimuthal vorticity

contours, (∇×u)θ, of the perturbation field (basic flow removed) on top of a 3D view of

a couple of axial vorticity iso-surfaces at (∇×u)z = ±0.3. The pictures correspond to

t = 20, 70, 130 and 200, and have been taken from a viewpoint travelling downstream

at the same speed as the perturbation.

4. Growth of the turbulent patch as it is advected downstream. Black dots represent

points fulfilling the criterion that 〈uz〉
2
rms ≥ 0.5%(Ucl/2)2. Dashed lines show the

position of the trailing and leading edges as a function of time.

5. Experimental (gray squares) and computational (white circles) critical amplitude

thresholds. Both sets of values have been normalized independently with respect

to their critical amplitudes at Re = 14000.

6. Relative transient drop of Rea for slightly subcritical injections at different values of

nominal Re, indicated next to each of the corresponding curves.

7. Cross-sectional cartesian coordinate system used in designing the jet corresponding to

the first injection point.
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List of table captions

I. Computed threshold amplitudes Anum, based on numerical measurement of u∗, for

comparison with those corresponding to the experiments by Hof, Juel and Mullin1,

Aexp. The quantities appearing in the last two rows are the normalized amplitudes

according to equation (30).
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FIG. 1: Mellibovsky Phys. Fluids.

25



∆tinj u∗ Anum × 103 Aexp × 103 Anum Aexp

4.0 0.157 1.495 6.167 1.48 1.72

8.0 0.112 1.280 4.443 1.26 1.24

10.0 0.100 1.225 4.244 1.21 1.19

14.0 0.090 1.167 4.045 1.15 1.13

16.0 0.081 1.106 3.834 1.09 1.07

24.0 0.068 1.013 3.581 1.00 1.00

TABLE I: Mellibovsky Phys. Fluids.
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